A Note on Uniform Convergence of Stochastic Processes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convergence of Stochastic Processes

where £iX) is the distribution function of the random variable X,f( ) is a real-valued function 5 continuous almost everywhere (p), and the limit is in the sense of the usual weak convergence of distributions. Equation (2) is usually the real center of interest, for many " limit-distribution theorems" are implicit in it. It is clear that for given {pn} and p, the better theorem of this kind wou...

متن کامل

A note on uniform convergence of an ARCH(∞) estimator

We consider parameter estimation for a class of ARCH(∞) models, which do not necessarily have a parametric form. The estimation is based on a normalised least squares approach, where the normalisation is the weighted sum of past observations. The number of parameters estimated depends on the sample size and increases as the sample size grows. Using maximal inequalities for martingales and mixin...

متن کامل

Note on Convergence of Dirichlet Processes

en(u, v) = \ (A\x) Vu(x), Vv(x)) #(*) dx, (1.3) jR n) = C?(R ). Here (u,v) denotes the inner product on R. By our assumptions (1.1) and (1.2), it is easy to see that the form (en, 3>(en)) is closable on L\R , <pl dx); we denote the closure of (en5 0(eJ) by (en, 9{en)), where of course 2{en) = 9{t) = H\' \R ). The hypotheses (1.1) and (1.2) ensure that ®(en) = 9{t) = Hl' (R) for all neN. Then (e...

متن کامل

Convergence of Stochastic Processes

Often the best way to adumbrate a dark and dense assemblage of material is to describe the background in contrast to which the edges of the nebulosity may be clearly discerned. Hence, perhaps the most appropriate way to introduce this paper is to describe what it is not. It is not a comprehensive study of stochastic processes, nor an in-depth treatment of convergence. In fact, on the surface, t...

متن کامل

A Note on Uniform Laws of Averages for Dependent Processes

If for a ‘permissible’ family of functions F and an i.i.d. process {Xi} ∞ i=0 lim n→∞ sup f∈F ∣ ∣ ∣ ∣ ∣ 1 n n−1 ∑ i=0 f(Xi)− Ef(X0) ∣ ∣ ∣ ∣ ∣ = 0 with probability one, then the same holds for every absolutely regular (weakly Bernoulli) process having the same marginal distribution. In particular, for any class of sets C having finite V-C dimension and any absolutely regular process {Xi} ∞ i=0 l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1967

ISSN: 0002-9939

DOI: 10.2307/2035239